Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add filters

Language
Document Type
Year range
1.
authorea preprints; 2022.
Preprint in English | PREPRINT-AUTHOREA PREPRINTS | ID: ppzbmed-10.22541.au.165237518.80150889.v1

ABSTRACT

Background: The ongoing outbreak of SARS-CoV-2 Omicron BA.2 infections in Hong Kong, the world model city of universal masking, has resulted in a major public health crisis. Although the third heterologous BNT162b2 vaccination after 2-dose CoronaVac generated higher neutralizing antibody responses than the third homologous CoronaVac booster, vaccine efficacy and corelates of immune protection against the major circulating Omicron BA.2 remains to be investigated. Methods: : We investigated the vaccine efficacy against the Omicron BA.2 breakthrough infection among 481 public servants who had been received with SARS-CoV-2 vaccines including two-dose BNT162b2 (2×BNT, n=169), three-dose BNT162b2 (2×BNT, n=175), two-dose CoronaVac (2×CorV, n=37), three-dose CoronaVac (3×CorV, n=68) and third-dose BNT162b2 following 2×CorV (2×CorV+1BNT, n=32). Humoral and cellular immune responses after three-dose vaccination were characterized and correlated with clinical characteristics of BA.2 infection. Results: : During the BA.2 outbreak, 29.3% vaccinees were infected. Three-dose vaccination provided protection with lower incidence rates of breakthrough infections (2×BNT 49.2% vs 3×BNT 16.6%, p<0.0001; 2×CorV 48.6% vs 3×CoV 20.6%, p=0.003). The third heterologous vaccination showed the lowest incidence (2×CorV+1×BNT 6.3%). Although BA.2 conferred the highest neutralization resistance compared with variants of concern tested, the third dose vaccination-activated spike-specific memory B and Omicron cross-reactive T cell responses contributed to reduced frequencies of breakthrough infection and disease severity. Conclusions: : Our results have implications to timely boost vaccination and immune responses likely required for vaccine-mediated protection against Omicron BA.2 pandemic.


Subject(s)
Breakthrough Pain
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.05.09.491254

ABSTRACT

The ongoing outbreak of SARS-CoV-2 Omicron BA.2 infections in Hong Kong, the world model city of universal masking, has resulted in a major public health crisis. In this study, we investigate public servants who had been vaccinated with two dose (82.7%) or three dose (14%) of either CoronaVac (CorV) or BNT162b2 (BNT). During the BA.2 outbreak, 29.3% vaccinees were infected. Three-dose vaccination provided protection with lower incidence rates of breakthrough infections (2xBNT 49.2% vs 3xBNT 16.6%, p<0.0001; 2xCorV 48.6% vs 3xCoV 20.6%, p=0.003). The third heterologous vaccination showed the lowest incidence (2xCorV+1xBNT 6.3%). Although BA.2 conferred the highest neutralization resistance compared with variants of concern tested, the third dose vaccination-activated spike-specific memory B and Omicron cross-reactive T cell responses contributed to reduced frequencies of breakthrough infection and disease severity. Our results have implications to timely boost vaccination and immune responses likely required for vaccine-mediated protection against Omicron BA.2 pandemic.


Subject(s)
Breakthrough Pain
3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.01.05.475037

ABSTRACT

The strikingly high transmissibility and antibody evasion of SARS-CoV-2 Omicron variant have posted great challenges on the efficacy of current vaccines and antibody immunotherapy. Here, we screened 34 BNT162b2-vaccinees and cloned a public broadly neutralizing antibody (bNAb) ZCB11 from an elite vaccinee. ZCB11 neutralized all authentic SARS-CoV-2 variants of concern (VOCs), including Omicron and OmicronR346K with potent IC50 concentrations of 36.8 and 11.7 ng/mL, respectively. Functional analysis demonstrated that ZCB11 targeted viral receptor-binding domain (RBD) and competed strongly with ZB8, a known RBD-specific class II NAb. Pseudovirus-based mapping of 57 naturally occurred single mutations or deletions revealed that only S371L resulted in 11-fold neutralization resistance, but this phenotype was not observed in the Omicron variant. Furthermore, prophylactic ZCB11 administration protected lung infection against both the circulating pandemic Delta and Omicron variants in golden Syrian hamsters. These results demonstrated that vaccine-induced ZCB11 is a promising bNAb for immunotherapy against pandemic SARS-CoV-2 VOCs.


Subject(s)
Severe Acute Respiratory Syndrome , Lung Diseases
4.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.27.474218

ABSTRACT

Highly transmissible SARS-CoV-2 Omicron variant has posted a new crisis for COVID-19 pandemic control. Within a month, Omicron is dominating over Delta variant in several countries probably due to immune evasion. It remains unclear whether vaccine-induced memory responses can be recalled by Omicron infection. Here, we investigated host immune responses in the first vaccine-breakthrough case of Omicron infection in Hong Kong. We found that the breakthrough infection rapidly recruited potent cross-reactive broad neutralizing antibodies (bNAbs) against current VOCs, including Alpha, Beta, Gamma, Delta and Omicron, from unmeasurable IC50 values to mean 1:2929 at around 9-12 days, which were higher than the mean peak IC50 values of BioNTech-vaccinees. Cross-reactive spike- and nucleocapsid-specific CD4 and CD8 T cell responses were detected. Similar results were also obtained in the second vaccine-breakthrough case of Omicron infection. Our preliminary findings may have timely implications to booster vaccine optimization and preventive strategies of pandemic control.


Subject(s)
Breakthrough Pain , COVID-19
5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.22.473934

ABSTRACT

Background: Nearly 4 billion doses of the BioNTech-mRNA and Sinovac-inactivated vaccines have been administrated globally, yet different vaccine-induced immunity against SARS-CoV-2 variants of concern (VOCs) remain incompletely investigated. Methods: We compare the immunogenicity and durability of these two vaccines among fully vaccinated Hong Kong people. Findings: Standard BioNTech and Sinovac vaccinations were tolerated and induced neutralizing antibody (NAb) (100% and 85.7%) and spike-specific CD4 T cell responses (96.7% and 82.1%), respectively. The geometric mean NAb IC 50 and median frequencies of reactive CD4 subsets were consistently lower among Sinovacvaccinees than BioNTech-vaccinees. Against VOCs, NAb response rate and geometric mean IC 50 against B1.351 and B.1.617.2 were significantly lower for Sinovac (14.3%, 15 and 50%, 23.2) than BioNTech (79.4%, 107 and 94.1%, 131). Three months after vaccinations, NAbs to VOCs dropped near to detection limit, along with waning memory T cell responses, mainly among Sinovac-vaccinees. Interpretation: Our results indicate that Sinovac-vaccinees may face higher risk to pandemic VOCs breakthrough infection.


Subject(s)
Breakthrough Pain
6.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.10.21.465252

ABSTRACT

Background Vaccines in emergency use are efficacious against COVID-19, yet vaccine-induced prevention against nasal SARS-CoV-2 infection remains suboptimal. Methods Since mucosal immunity is critical for nasal prevention, we investigated an intramuscular PD1-based receptor-binding domain (RBD) DNA vaccine (PD1-RBD-DNA) and intranasal live attenuated influenza-based vaccines (LAIV-CA4-RBD and LAIV-HK68-RBD) against SARS-CoV-2. Findings Substantially higher systemic and mucosal immune responses, including bronchoalveolar lavage IgA/IgG and lung polyfunctional memory CD8 T cells, were induced by the heterologous PD1-RBD-DNA/LAIV-HK68-RBD as compared with other regimens. When vaccinated animals were challenged at the memory phase, prevention of robust SARS-CoV-2 infection in nasal turbinate was achieved primarily by the heterologous regimen besides consistent protection in lungs. The regimen-induced antibodies cross-neutralized variants of concerns. Furthermore, LAIV-CA4-RBD could boost the BioNTech vaccine for improved mucosal immunity. Interpretation Our results demonstrated that intranasal influenza-based boost vaccination is required for inducing mucosal and systemic immunity for effective SARS-CoV-2 prevention in both upper and lower respiratory systems. Funding This study was supported by the Research Grants Council Collaborative Research Fund (C7156-20G, C1134-20G and C5110-20G), General Research Fund (17107019) and Health and Medical Research Fund (19181052 and 19181012) in Hong Kong; Outbreak Response to Novel Coronavirus (COVID-19) by the Coalition for Epidemic Preparedness Innovations; Shenzhen Science and Technology Program (JSGG20200225151410198); the Health@InnoHK, Innovation and Technology Commission of Hong Kong; and National Program on Key Research Project of China (2020YFC0860600, 2020YFA0707500 and 2020YFA0707504); and donations from the Friends of Hope Education Fund. Z.C.’s team was also partly supported by the Theme-Based Research Scheme (T11-706/18-N).


Subject(s)
COVID-19
7.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.10.05.463282

ABSTRACT

Robust severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in nasal turbinate (NT) accounts for high viral transmissibility, yet whether neutralizing IgA antibodies can control it remains unknown. Here, we evaluated receptor binding domain (RBD)-specific monomeric B8-mIgA1 and B8-mIgA2, and dimeric B8-dIgA1 and B8-dIgA2 against intranasal SARS-CoV-2 challenge in Syrian hamsters. These antibodies exhibited comparably potent neutralization against authentic virus by competing with human angiotensin converting enzyme-2 (ACE2) receptor for RBD binding. While reducing viruses in lungs, pre-exposure intranasal B8-dIgA1 or B8-dIgA2 led to 81-fold more infectious viruses and severer damage in NT than placebo. Virus-bound B8-dIgA1 and B8-dIgA2 could engage CD209 as an alternative receptor for entry into ACE2-negative cells and allowed viral cell-to-cell transmission. Cryo-EM revealed B8 as a class II neutralizing antibody binding trimeric RBDs in 3-up or 2-up/1-down conformation. Therefore, RBD-specific neutralizing dIgA engages an unexpected action for enhanced SARS-CoV-2 nasal infection and injury in Syrian hamsters.


Subject(s)
Severe Acute Respiratory Syndrome
8.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-923755.v1

ABSTRACT

Robust severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in nasal turbinate (NT) accounts for high viral transmissibility, yet whether neutralizing IgA antibodies can control it remains unknown. Here, we evaluated receptor binding domain (RBD)-specific monomeric B8-mIgA1 and B8-mIgA2, and dimeric B8-dIgA1 and B8-dIgA2 against intranasal SARS-CoV-2 challenge in Syrian hamsters. These antibodies exhibited comparably potent neutralization against authentic virus by competing with human angiotensin converting enzyme-2 (ACE2) receptor for RBD binding. While reducing viruses in lungs, pre-exposure intranasal B8-dIgA1 or B8-dIgA2 led to 81-fold more infectious viruses and severer damage in NT than placebo. Virus-bound B8-dIgA1 and B8-dIgA2 could engage CD209 as an alternative receptor for entry into ACE2-negative cells and allowed viral cell-to-cell transmission. Cryo-EM revealed B8 as a class II neutralizing antibody binding trimeric RBDs in 3-up or 2-up/1-down conformation. Therefore, RBD-specific neutralizing dIgA engages an unexpected action for enhanced SARS-CoV-2 nasal infection and injury in Syrian hamsters.


Subject(s)
Severe Acute Respiratory Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL